Advertisements
Advertisements
Question
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Solution
y = `"e"^(5"x"^2 - 2"x" + 4)`
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"("e"^(5"x"^2 - 2"x" + 4))`
`= "e"^(5"x"^2 - 2"x" + 4) * "d"/"dx"(5"x"^2 - 2"x" + 4)`
`= "e"^(5"x"^2 - 2"x" + 4) * [5(2"x") - 2 + 0]`
∴ `"dy"/"dx" = (10"x" - 2)* "e"^(5"x"^2 - 2"x" + 4)`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`