Advertisements
Advertisements
Question
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
Solution
We have y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}`
Where 0 < x < 1
Put x = sinA and `sqrt(x)` = sinB
Therefore, y = `sin^-1{sin"A" sqrt(1 - sin^2"B") - sin"B"sqrt(1 - sin^2"A")}`
= `sin^-1 {sin "A" cos "B" - sin "B" cos "A"}`
= `sin^-1 {sin("A" - "B")}`
= A – B
Thus y = `sin^-1x - sin^1 sqrt(x)`
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = 1/sqrt(1 - x^2) - 1/sqrt(1 - sqrt((x)^2)) * "d"/("d"x) (sqrt(x))`
= `1/sqrt(1 - x^2) - 1/(2sqrt(x) sqrt(1 - x))`.
APPEARS IN
RELATED QUESTIONS
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : e2x . tan x
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = log(log x)
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x – x2.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
Derivative of ex sin x w.r.t. e-x cos x is ______.
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
y = sin (ax+ b)
y = `cos sqrt(x)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
The differential equation of (x - a)2 + y2 = a2 is ______
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`