English

Solve : "Dy"/"Dx" = 1 - "Xy" + "Y" - "X" - Mathematics

Advertisements
Advertisements

Question

Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`

Sum

Solution

`"dy"/"dx" = 1 - "xy" + "y" - "x"`

`"dy"/"dx" = (1 + "y") - "x" (1 + "y")`

`"dy"/"dx" = (1 + "y") (1 - "x")`

`"dy"/(1 + "y") = (1 - "x")"dx"`

Integrating bothe sides, we obtain

`int"dy"/(1 + "y") = int (1 - "x")"dx"`

log |1 + y| `= "x" - "x"^2/2 + "C"`

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `"dy"/"dx"` if `sqrt(x) + sqrt(y) = sqrt(a)`


Find `"dy"/"dx"` if xey + yex = 1


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = log(log x)


Choose the correct alternative.

If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`


If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


If y = x2, then `("d"^2y)/("d"x^2)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______ 


If y = log (cos ex), then `"dy"/"dx"` is:


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×