English

Find dydxdydx if ex+y = cos(x – y) - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"` if ex+y = cos(x – y)

Sum

Solution

ex+y = cos(x – y)
Differentiating both sides w.r.t. x, we get
`e^(x+ y)."d"/"dx"(x + y) = -sin(x - y)."d"/"dx"(x - y)`

∴ `e^(x + y)(1 + "dy"/"dx") = -sin(x - y)."dy"/"dx"(x - y)`

∴ `e^(x + y) + e^(x + y)."dy"/"dx" = -sin(x - y)(1 - "dy"/"dx")`

∴ `[e^(x + y) - sin(x - y)]"dy"/"dx" = -sin(x - y) - e^(x + y)`

∴ `"dy"/"dx" = -[(sin(x - y) + e^(x + y))/(e^(x + y) - sin(x - y))] = (sin(x - y) + e^(x + y))/(sin(x - y) - e^(x + y)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.3 [Page 40]

RELATED QUESTIONS

If y = eax. cos bx, then prove that

`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


If y = log (cos ex) then find `"dy"/"dx".`


Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find `"dy"/"dx"` if xey + yex = 1


Find the second order derivatives of the following : e2x . tan x


Find the second order derivatives of the following : e4x. cos 5x


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


State whether the following is True or False:

The derivative of polynomial is polynomial.


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Differentiate `"e"^("4x" + 5)` with respect to 104x.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x


Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______


If y = x10, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


Derivative of ex sin x w.r.t. e-x cos x is ______.


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


If y = `(cos x)^((cosx)^((cosx))`, then `("d")/("d"x)` = ______.


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If f(x) = |cos x – sinx|, find `"f'"(pi/6)`


If y = log (cos ex), then `"dy"/"dx"` is:


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = sin (ax+ b)


y = `sec (tan sqrt(x))`


y = `2sqrt(cotx^2)`


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


Let f(x) = log x + x3 and let g(x) be the inverse of f(x), then |64g"(1)| is equal to ______.


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.


If y = `tan^-1((6x - 7)/(6 + 7x))`, then `dy/dx` = ______.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`


If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`


Find `dy/dx` if, `y = e^(5x^2 - 2x +  4)`.


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/(dx)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×