Advertisements
Advertisements
Question
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Solution
y = (5x3 - 4x2 - 8x)9
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "d"/"dx"` [(5x3 - 4x2 - 8x)9]
`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * "d"/"dx" ("5x"^3 - 4"x"^2 - 8"x")`
`= 9("5x"^3 - 4"x"^2 - 8"x")^8 * [5(3"x"^2) - 4(2"x") - 8]`
∴ `"dy"/"dx" = 9("5x"^3 - 4"x"^2 - 8"x")^8 * (15"x"^2 - 8"x" - 8)`
APPEARS IN
RELATED QUESTIONS
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if, y = log(log x)
The derivative of f(x) = ax, where a is constant is x.ax-1.
State whether the following is True or False:
The derivative of polynomial is polynomial.
`d/dx(10^x) = x*10^(x - 1)`
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`