English

If ax2 + 2hxy + by2 = 0, then prove that d2ydx2 = 0. - Mathematics and Statistics

Advertisements
Advertisements

Question

If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.

Sum

Solution

ax2 + 2hxy + by2 = 0

Differentiating w.r.t. 'x',

`2ax + 2h (x (dy)/(dx) + y.1) + 2by (dy)/(dx)` = 0

∴ `(2hx + 2by) (dy)/(dx) = - (2ax + 2hy)`

∴ `(dy)/(dx) = (-2(ax + hy))/(2(hx + by))`

∴ `(dy)/(dx) = (-(ax + hy))/((hx + by))`   ......(1)

Now, ax2 + 2hxy + by2 = 0

⇒ ax2 + hxy + hxy + by2 = 0

⇒ x(ax + hy) + y(hx + by) = 0

⇒ x(ax + hy) = – y(hx + by)

⇒ `(ax ++ hy)/(hx + by) = (-y)/x`  ......(2)

Substituting (2) in (1),

`(dy)/(dx) = - ((-y)/x) = y/x`  ......(3)

Again, differentiating w.r.t., x,

`(d^2y)/(dx^2) = (x . (dy)/(dx) - y.1)/x^2`

= `(x . y/x - y)/x^2`  ......[From (3)]

⇒ `(d^2y)/(dx^2) = (y - y)/x^2` = 0.

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (March) Set 1

APPEARS IN

RELATED QUESTIONS

Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


Derivative of ex sin x w.r.t. e-x cos x is ______.


Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = `sec (tan sqrt(x))`


y = `cos sqrt(x)`


Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.


Let f(x) = x | x | and g(x) = sin x

Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement II gof is twice differentiable at x = 0.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


Find `dy/dx` if ,

`x= e^(3t) , y = e^(4t+5)`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×