Advertisements
Advertisements
Question
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Solution
ax2 + 2hxy + by2 = 0
Differentiating w.r.t. 'x',
`2ax + 2h (x (dy)/(dx) + y.1) + 2by (dy)/(dx)` = 0
∴ `(2hx + 2by) (dy)/(dx) = - (2ax + 2hy)`
∴ `(dy)/(dx) = (-2(ax + hy))/(2(hx + by))`
∴ `(dy)/(dx) = (-(ax + hy))/((hx + by))` ......(1)
Now, ax2 + 2hxy + by2 = 0
⇒ ax2 + hxy + hxy + by2 = 0
⇒ x(ax + hy) + y(hx + by) = 0
⇒ x(ax + hy) = – y(hx + by)
⇒ `(ax ++ hy)/(hx + by) = (-y)/x` ......(2)
Substituting (2) in (1),
`(dy)/(dx) = - ((-y)/x) = y/x` ......(3)
Again, differentiating w.r.t., x,
`(d^2y)/(dx^2) = (x . (dy)/(dx) - y.1)/x^2`
= `(x . y/x - y)/x^2` ......[From (3)]
⇒ `(d^2y)/(dx^2) = (y - y)/x^2` = 0.
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = `sqrt("x" + 1/"x")`
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
Derivative of ex sin x w.r.t. e-x cos x is ______.
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = `sec (tan sqrt(x))`
y = `cos sqrt(x)`
Let x(t) = `2sqrt(2) cost sqrt(sin2t)` and y(t) = `2sqrt(2) sint sqrt(sin2t), t ∈ (0, π/2)`. Then `(1 + (dy/dx)^2)/((d^2y)/(dx^2)` at t = `π/4` is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
Solve the following:
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`