English

Find the second order derivatives of the following : 2x5-4x3-2x2-9 - Mathematics and Statistics

Advertisements
Advertisements

Question

Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`

Sum

Solution

Let y = `2x^5 - 4x^3 - (2)/x^2 - 9`

Then `"dy"/"dx" = "d"/"dx"(2x^5 - 4x^3 - 2/x^2 - 9)`

= `2"d"/"dx"(x^5) - 4"d"/"dx"(x^3) - 2"d"/"dx"(x^-2) - "d"/"dx"(9)`

= 2 x 5x4 – 4 x 3x2 – 2(–2)x–3 – 0
= 10x4 – 12x2 + 4x–3
and
`(d^2y)/(dx^2) = "d"/"dx"(10x^4 - 12x^2 + 4x^-3)`

= `10"d"/"dx"(x^4) - 12"d"/"dx"(x^2) + 4"d"/"dx"(x^-3)`

= 10 x 4x3 – 12 x 2x + 4(–3)x–4
= `40x^3 - 24x - (12)/x^4`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Differentiation - Exercise 1.5 [Page 60]

RELATED QUESTIONS

Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`


Solve the following differential equation: 
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1


Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`


Find `"dy"/"dx"` if xey + yex = 1


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : e2x . tan x


Find the second order derivatives of the following : xx 


Find `"dy"/"dx"` if, y = log(log x)


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


Choose the correct alternative.

If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


State whether the following is True or False:

The derivative of polynomial is polynomial.


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`


Find `"dy"/"dx"`, if y = `2^("x"^"x")`.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______


If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


If y = x2, then `("d"^2y)/("d"x^2)` is ______


State whether the following statement is True or False:

If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


If y = (sin x2)2,  then `("d"y)/("d"x)` is equal to ______.


Differentiate `sqrt(tansqrt(x))` w.r.t. x


If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`


If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`


If f(x) = |cos x|, find f'`((3pi)/4)`


If f(x) = |cos x – sinx|, find `"f'"(pi/6)`


If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)` 


If y = log (cos ex), then `"dy"/"dx"` is:


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = cos (sin x)


y = sin (ax+ b)


If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


If y = 2x2 + a2 + 22 then `dy/dx` = ______.


If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.


Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Solve the following:

If y = `root5 ((3x^2 + 8x + 5)^4 ,)  "find"  "dy"/ "dx"`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If x = Φ(t) is a differentiable function of t, then prove that:

`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`

Hence, find `int(logx)^n/x dx`.


If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


If `y = root{5}{(3x^2 + 8x + 5)^4}, "find"  dy/dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×