Advertisements
Advertisements
Question
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Solution
Let y = `2x^5 - 4x^3 - (2)/x^2 - 9`
Then `"dy"/"dx" = "d"/"dx"(2x^5 - 4x^3 - 2/x^2 - 9)`
= `2"d"/"dx"(x^5) - 4"d"/"dx"(x^3) - 2"d"/"dx"(x^-2) - "d"/"dx"(9)`
= 2 x 5x4 – 4 x 3x2 – 2(–2)x–3 – 0
= 10x4 – 12x2 + 4x–3
and
`(d^2y)/(dx^2) = "d"/"dx"(10x^4 - 12x^2 + 4x^-3)`
= `10"d"/"dx"(x^4) - 12"d"/"dx"(x^2) + 4"d"/"dx"(x^-3)`
= 10 x 4x3 – 12 x 2x + 4(–3)x–4
= `40x^3 - 24x - (12)/x^4`.
APPEARS IN
RELATED QUESTIONS
Solve : `"dy"/"dx" = 1 - "xy" + "y" - "x"`
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find `"dy"/"dx"` if cos (xy) = x + y
Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`
Find the second order derivatives of the following : e2x . tan x
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Choose the correct alternative.
If y = (5x3 - 4x2 - 8x)9, then `"dy"/"dx"` =
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
State whether the following is True or False:
The derivative of polynomial is polynomial.
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.
If f'(4) = 5, f(4) = 3, g'(6) = 7 and R(x) = g[3 + f(x)] then R'(4) = ______
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
Choose the correct alternative:
If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
If y = x2, then `("d"^2y)/("d"x^2)` is ______
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
If y = (sin x2)2, then `("d"y)/("d"x)` is equal to ______.
Differentiate `sqrt(tansqrt(x))` w.r.t. x
If ex + ey = ex+y , prove that `("d"y)/("d"x) = -"e"^(y - x)`
If y = `sin^-1 {xsqrt(1 - x) - sqrt(x) sqrt(1 - x^2)}` and 0 < x < 1, then find `("d"y)/(dx)`
If f(x) = |cos x|, find f'`((3pi)/4)`
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
If y = log (cos ex), then `"dy"/"dx"` is:
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = cos (sin x)
y = sin (ax+ b)
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that
`dy/dx = dy/(du) xx (du)/dx`
Hence find `dy/dx` if y = log(x2 + 5)
Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`
If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`.
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.