Advertisements
Advertisements
Question
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
Options
True
False
Solution
False
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"` if `xsqrt(x) + ysqrt(y) = asqrt(a)`
Find `dy/dx if x + sqrt(xy) + y = 1`
Find `"dy"/"dx"` if xey + yex = 1
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`
Find the second order derivatives of the following : e2x . tan x
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
Choose the correct alternative.
If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`
State whether the following is True or False:
The derivative of polynomial is polynomial.
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
If `sqrt(1 - x^2) + sqrt(1 - y^2) = "a"(x - y)`, prove that `"dy"/"dx" = sqrt((1 - y^2)/(1 - x^2)`
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`