English

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of - Mathematics and Statistics

Advertisements
Advertisements

Question

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x

Sum

Solution

Let δx be a small increment in the value of x.

Since u is a function of x, there should be a corresponding increment δu in the value of u.

Also y is a function of u.

∴ There should be a corresponding increment δy in the value of y.

Consider, `(deltay)/(deltax) = (deltay)/(deltau) xx (deltau)/(deltax)`

Taking `lim_(deltax -> 0)` on both sides, we get

`lim_(deltax -> 0) (deltay)/(deltax) = lim_(deltax -> 0) (deltay)/(deltau) xx lim_(deltax -> 0) (deltau)/(deltax)`

As δx → 0, δu → 0  ........[u is a continuous function of x]

∴ `lim_(deltax -> 0) (deltay)/(deltax) = lim_(deltau -> 0) (deltay)/(deltau) xx lim_(deltax ->0) (deltau)/(deltax)`  ........(i)

y is a differentiable function of u and u is a differentiable function of x.

∴ `lim_(deltau -> 0) (deltay)/(deltau) = ("d"y)/("d"u)` exists and is finite.

Also, `lim_(deltax -> 0) (deltau)/(deltax) = ("d"u)/("d"x)` exists and is finite.

From (i), we get

`lim_(deltax -> 0) (deltay)/(deltax) = ("d"y)/("d"u) xx ("d"u)/("d"x)`  ........(ii)

Here, R.H.S. of (ii) exists and is finite.

Hence, L.H.S. of (ii) should also exists and be finite.

∴ `lim_(deltax -> 0) (deltay)/(deltax) = ("d"y)/("d"x)` exists and is finite.

∴ Equation (ii) becomes

`("d"y)/("d"x) = ("d"y)/("d"u) xx ("d"u)/("d"x)`

y = sin2x

Differentiating w.r.t. x, we get

`("d"y)/("d"x) = "d"/("d"x)(sin^2x)`

= `2sinx*"d"/("d"x)(sinx)`

= 2 sin x cos x

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.1: Differentiation - :: Theorems ::

RELATED QUESTIONS

Find `dy/dx if x + sqrt(xy) + y = 1`


Find `"dy"/"dx"` if xey + yex = 1


Find `"dy"/"dx"` if ex+y = cos(x – y)


Find `"dy"/"dx"` if cos (xy) = x + y


Find `"dy"/"dx"` if `e^(e^(x - y)) = x/y`


Find the second order derivatives of the following : `2x^5 - 4x^3 - (2)/x^2 - 9`


Find the second order derivatives of the following : e4x. cos 5x


Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9 


Find `"dy"/"dx"` if, y = log(log x)


Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)


Find `"dy"/"dx"` if, y = log(ax2 + bx + c) 


Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`


Choose the correct alternative.

If y = `sqrt("x" + 1/"x")`, then `"dy"/"dx" = ?`


If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`


Fill in the Blank

If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________


If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`


The derivative of f(x) = ax, where a is constant is x.ax-1.


State whether the following is True or False:

The derivative of polynomial is polynomial.


`d/dx(10^x) = x*10^(x - 1)`


Solve the following:

If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"` 


If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 25 + 30x  – x2.


Find `"dy"/"dx"`, if y = xx.


If y = sec (tan−1x) then `("d"y)/("d"x)` at x = 1 is ______.


If x = cos−1(t), y = `sqrt(1 - "t"^2)` then `("d"y)/("d"x)` = ______


If y = cos−1 [sin (4x)], find `("d"y)/("d"x)`


Choose the correct alternative:

If y = `root(3)((3x^2 + 8x - 6)^5`, then `("d"y)/("d"x)` = ?


Choose the correct alternative:

If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?


If y = x10, then `("d"y)/("d"x)` is ______


If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______


If y = x2, then `("d"^2y)/("d"x^2)` is ______


State whether the following statement is True or False:

If y = ex, then `("d"y)/("d"x)` = ex 


State whether the following statement is True or False:

If y = ex, then `("d"^2y)/("d"x^2)` = ex 


Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10 


Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`


If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b))  tan  x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______ 


If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.


`"d"/("d"x) [sin(1 - x^2)]^2` = ______.


If x = a sec3θ and y = a tan3θ, find `("d"y)/("d"x)` at θ = `pi/3`


If f(x) = |cos x|, find f'`((3pi)/4)`


If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.


Differentiate the function from over no 15 to 20 sin (x2 + 5)


y = sin (ax+ b)


y = `sec (tan sqrt(x))`


If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.


If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`


If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`


If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find the rate of change of demand (x) of acommodity with respect to its price (y) if

`y = 12 + 10x + 25x^2`


lf y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, such that the composite function y = f[g(x)] is a differentiable function of x, then prove that:

`dy/dx = dy/(du) xx (du)/dx`

Hence, find `d/dx[log(x^5 + 4)]`.


Find `dy/dx` if, y = `e^(5x^2-2x+4)`


Solve the following:

If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`


If y = f(u) is a differentiable function of u and u = g(x) is a differentiate function of x such that the composite function y = f[g(x)] is a differentiable function of x then prove that

`dy/dx = dy/(du) xx (du)/dx`

Hence find `dy/dx` if y = log(x2 + 5)


Find `dy/dx` if, y = `e^(5x^2 -2x + 4)`


If y = `root5((3x^2 + 8x +5)^4)`, find `dy/dx`. 


Solve the following:

If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`


Solve the following:

If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`


Find `dy/dx` if, `y=e^(5x^2-2x+4)`


Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`


Solve the following:

If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"` 


Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`


Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`


Solve the following.

If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`


Find `(dy) / (dx)` if, `y = e ^ (5x^2 - 2x + 4)`


If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×