Advertisements
Advertisements
प्रश्न
If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x such that the composite function y = f[g(x)] is a differentiable function of x, then `("d"y)/("d"x) = ("d"y)/("d"u)*("d"u)/("d"x)`. Hence find `("d"y)/("d"x)` if y = sin2x
उत्तर
Let δx be a small increment in the value of x.
Since u is a function of x, there should be a corresponding increment δu in the value of u.
Also y is a function of u.
∴ There should be a corresponding increment δy in the value of y.
Consider, `(deltay)/(deltax) = (deltay)/(deltau) xx (deltau)/(deltax)`
Taking `lim_(deltax -> 0)` on both sides, we get
`lim_(deltax -> 0) (deltay)/(deltax) = lim_(deltax -> 0) (deltay)/(deltau) xx lim_(deltax -> 0) (deltau)/(deltax)`
As δx → 0, δu → 0 ........[u is a continuous function of x]
∴ `lim_(deltax -> 0) (deltay)/(deltax) = lim_(deltau -> 0) (deltay)/(deltau) xx lim_(deltax ->0) (deltau)/(deltax)` ........(i)
y is a differentiable function of u and u is a differentiable function of x.
∴ `lim_(deltau -> 0) (deltay)/(deltau) = ("d"y)/("d"u)` exists and is finite.
Also, `lim_(deltax -> 0) (deltau)/(deltax) = ("d"u)/("d"x)` exists and is finite.
From (i), we get
`lim_(deltax -> 0) (deltay)/(deltax) = ("d"y)/("d"u) xx ("d"u)/("d"x)` ........(ii)
Here, R.H.S. of (ii) exists and is finite.
Hence, L.H.S. of (ii) should also exists and be finite.
∴ `lim_(deltax -> 0) (deltay)/(deltax) = ("d"y)/("d"x)` exists and is finite.
∴ Equation (ii) becomes
`("d"y)/("d"x) = ("d"y)/("d"u) xx ("d"u)/("d"x)`
y = sin2x
Differentiating w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x)(sin^2x)`
= `2sinx*"d"/("d"x)(sinx)`
= 2 sin x cos x
APPEARS IN
संबंधित प्रश्न
If y = eax. cos bx, then prove that
`(d^2y)/(dx^2) - 2ady/dx + (a^2 + b^2)y` = 0
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
Solve the following differential equation:
x2 dy + (xy + y2) dx = 0, when x = 1 and y = 1
Find `"dy"/"dx"`If x3 + x2y + xy2 + y3 = 81
Find `dy/dx if x^2y^2 - tan^-1(sqrt(x^2 + y^2)) = cot^-1(sqrt(x^2 + y^2))`
Find `"dy"/"dx"` if ex+y = cos(x – y)
Find the second order derivatives of the following : e2x . tan x
Find the second order derivatives of the following : e4x. cos 5x
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = log(10x4 + 5x3 - 3x2 + 2)
Find `"dy"/"dx"` if, y = log(ax2 + bx + c)
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
Find `"dy"/"dx"` if, y = `"a"^((1 + log "x"))`
If y = 2x2 + 22 + a2, then `"dy"/"dx" = ?`
Fill in the Blank
If 3x2y + 3xy2 = 0, then `"dy"/"dx"` = ________
If `"x"^"m"*"y"^"n" = ("x + y")^("m + n")`, then `"dy"/"dx" = "______"/"x"`
State whether the following is True or False:
The derivative of polynomial is polynomial.
`d/dx(10^x) = x*10^(x - 1)`
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = `(5x + 7)/(2x - 13)`
Find `"dy"/"dx"`, if y = xx.
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
If sin−1(x3 + y3) = a then `("d"y)/("d"x)` = ______
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
If x = f(t) and y = g(t) are differentiable functions of t so that y is a differentiable function of x and `(dx)/(dt)` ≠ 0 then `(dy)/(dx) = ((dy)/(dt))/((dx)/(d"))`.
Hence find `(dy)/(dx)` if x = sin t and y = cost
Choose the correct alternative:
If y = `x^(sqrt(x))`, then `("d"y)/("d"x)` = ?
If y = (5x3 – 4x2 – 8x)9, then `("d"y)/("d"x)` is ______
If y = x10, then `("d"y)/("d"x)` is ______
If y = `("e")^((2x + 5))`, then `("d"y)/("d"x)` is ______
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
State whether the following statement is True or False:
If y = ex, then `("d"^2y)/("d"x^2)` = ex
Find `("d"y)/("d"x)`, if y = (6x3 – 3x2 – 9x)10
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
Find `("d"y)/("d"x)`, if y = `root(5)((3x^2 + 8x + 5)^4`
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
If u = x2 + y2 and x = s + 3t, y = 2s - t, then `(d^2u)/(ds^2)` = ______
If y = `x/"e"^(1 + x)`, then `("d"y)/("d"x)` = ______.
`"d"/("d"x) [sin(1 - x^2)]^2` = ______.
If f(x) = |cos x – sinx|, find `"f'"(pi/6)`
If y = `sec^-1 ((sqrt(x) + 1)/(sqrt(x + 1))) + sin^-1((sqrt(x) - 1)/(sqrt(x) + 1))`, then `"dy"/"dx"` is equal to ______.
If y = log (cos ex), then `"dy"/"dx"` is:
Differentiate the function from over no 15 to 20 sin (x2 + 5)
y = `sec (tan sqrt(x))`
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
If f(x) = `{{:(x^3 + 1",", x < 0),(x^2 + 1",", x ≥ 0):}`, g(x) = `{{:((x - 1)^(1//3)",", x < 1),((x - 1)^(1//2)",", x ≥ 1):}`, then (gof) (x) is equal to ______.
If y = em sin–1 x and (1 – x2) = Ay2, then A is equal to ______.
If y = 2x2 + a2 + 22 then `dy/dx` = ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, `y=e^(5x^2-2x+4)`
Solve the following:
If y = `root5 ((3x^2 + 8x + 5)^4 ,) "find" "dy"/ "dx"`
Solve the following:
If`y=root(5)((3x^2+8x+5)^4),"find" (dy)/dx`
Find `"dy"/"dx"` if, `"y" = "e"^(5"x"^2 - 2"x" + 4)`
If `y = root5(3x^2 + 8x + 5)^4`, find `dy/dx`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
The differential equation of (x - a)2 + y2 = a2 is ______
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
If y = `root5((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find the rate of change of demand (x) of acommodity with respect to its price (y) if
`y = 12 + 10x + 25x^2`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If y = `root5((3x^2 +8x+5)^4`,find `dy/dx`
If x = Φ(t) is a differentiable function of t, then prove that:
`int f(x)dx = int f[Φ(t)]*Φ^'(t)dt`
Hence, find `int(logx)^n/x dx`.
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Find `dy/dx` if, y = `e^(5x^2-2x+4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find the rate of change of demand (x) of a commodity with respect to its price (y) if y = 12 + 10`x + 25x^2`
Solve the following.
If `y=root(5)((3x^2 + 8x + 5)^4)`, find `dy/dx`
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`
If `y = (x + sqrt(a^2 + x^2))^m`, prove that `(a^2 + x^2)(d^2y)/(dx^2) + xdy/dx - m^2y = 0`
Find `dy/dx` if, `y = e^(5x^2 - 2x + 4)`.