Advertisements
Advertisements
प्रश्न
Solve the following:
If y = (6x3 - 3x2 - 9x)10, find `"dy"/"dx"`
उत्तर
y = (6x3 - 3x2 - 9x)10
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "d"/"dx"[(6"x"^3 - 3"x"^2 - 9"x")^10]`
`= 10(6"x"^3 - 3"x"^2 - 9"x")^9 xx "d"/"dx" (6"x"^3 - 3"x"^2 - 9"x")`
`= 10(6"x"^3 - 3"x"^2 - 9"x")^9 xx [6(3"x"^2) - 3("2x") - 9]`
∴ `"dy"/"dx" = 10(6"x"^3 - 3"x"^2 - 9"x")^9 * (18"x"^2 - 6"x" - 9)`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
if `y = tan^2(log x^3)`, find `(dy)/(dx)`
If y = log (cos ex) then find `"dy"/"dx".`
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = (5x3 - 4x2 - 8x)9
Find `"dy"/"dx"` if, y = `"e"^(5"x"^2 - 2"x" + 4)`
If y = `root(5)((3"x"^2 + 8"x" + 5)^4)`, find `"dy"/"dx"`.
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
If y = x10, then `("d"y)/("d"x)` is ______
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
Given f(x) = `1/(x - 1)`. Find the points of discontinuity of the composite function y = f[f(x)]
y = cos (sin x)
y = sin (ax+ b)
If `d/dx` [f(x)] = ax+ b and f(0) = 0, then f(x) is equal to ______.
Find `"dy"/"dx" if, e ^(5"x"^2- 2"X"+4)`
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
Solve the following:
If `y =root(5)((3x^2 + 8x + 5)^4), "find" dy/(dx)`
Find `dy/dx` if, `y = e^(5x^2 - 2x+4)`
If y = `root{5}{(3x^2 + 8x + 5)^4)`, find `(dy)/(dx)`