Advertisements
Advertisements
प्रश्न
Find `("d"^2y)/("d"x^2)`, if y = `"e"^((2x + 1))`
उत्तर
y = `"e"^((2x + 1))`
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "e"^((2x + 1))*"d"/("d"x)(2x + 1)`
∴ `("d"y)/("d"x) = "e"^((2x + 1))*(2 + 0)`
∴ `("d"y)/("d"x) = 2"e"^((2x + 1))`
Again, differentiating both sides w.r.t. x , we get
∴ `("d"^2y)/("d"x^2) = 2*"d"/("d"x)"e"^((2x + 1))`
= `2"e"^((2x + 1))*"d"/("d"x)(2x + 1)`
= `2"e"^((2x + 1))*(2 + 0)`
∴ `("d"^2y)/("d"x^2) = 4"e"^((2x + 1))`
संबंधित प्रश्न
Find `"dy"/"dx"` if xey + yex = 1
Find the second order derivatives of the following : xx
Find `"dy"/"dx"` if, y = `root(3)("a"^2 + "x"^2)`
Find `"dy"/"dx"` if, y = log(log x)
Find `"dy"/"dx"` if, y = `5^(("x" + log"x"))`
Find `"dy"/"dx"`, if y = `2^("x"^"x")`.
Suppose y = f(x) is a differentiable function of x on an interval I and y is one – one, onto and `("d"y)/("d"x)` ≠ 0 on I. Also if f–1(y) is differentiable on f(I), then `("d"x)/("d"y) = 1/(("d"y)/("d"x)), ("d"y)/("d"x)` ≠ 0
If y = `1/sqrt(3x^2 - 2x - 1)`, then `("d"y)/("d"x)` = ?
State whether the following statement is True or False:
If x2 + y2 = a2, then `("d"y)/("d"x)` = = 2x + 2y = 2a
y = (6x4 – 5x3 + 2x + 3)6, find `("d"y)/("d"x)`
Solution: Given,
y = (6x4 – 5x3 + 2x + 3)6
Let u = `[6x^4 - 5x^3 + square + 3]`
∴ y = `"u"^square`
∴ `("d"y)/"du"` = 6u6–1
∴ `("d"y)/"du"` = 6( )5
and `"du"/("d"x) = 24x^3 - 15(square) + 2`
By chain rule,
`("d"y)/("d"x) = ("d"y)/square xx square/("d"x)`
∴ `("d"y)/("d"x) = 6(6x^4 - 5x^3 + 2x + 3)^square xx (24x^3 - 15x^2 + square)`
If y = `2/(sqrt(a^2 - b^2))tan^-1[sqrt((a - b)/(a + b)) tan x/2], "then" (d^2y)/dx^2|_{x = pi/2}` = ______
Differentiate `sqrt(tansqrt(x))` w.r.t. x
Find `("d"y)/("d"x)`, if y = `tan^-1 ((3x - x^3)/(1 - 3x^2)), -1/sqrt(3) < x < 1/sqrt(3)`
If f(x) = |cos x|, find f'`((3pi)/4)`
y = sin (ax+ b)
If ax2 + 2hxy + by2 = 0, then prove that `(d^2y)/(dx^2)` = 0.
Let f(x) = x | x | and g(x) = sin x
Statement I gof is differentiable at x = 0 and its derivative is continuous at that point.
Statement II gof is twice differentiable at x = 0.
Find `dy/dx` if, y = `e^(5x^2 - 2x + 4)`
The differential equation of (x - a)2 + y2 = a2 is ______
Find `dy/dx` if, y = `e^(5 x^2 - 2x + 4)`
Find `dy/dx` if ,
`x= e^(3t) , y = e^(4t+5)`
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
If y = `sqrt((1 - x)/(1 + x))`, then `(1 - x^2) dy/dx + y` = ______.
If y = `log((x + sqrt(x^2 + a^2))/(sqrt(x^2 + a^2) - x))`, find `dy/dx`.
Find `dy/dx` if, `y = e^(5x^2 - 2x +4)`
If `y=root5((3x^2+8x+5)^4)`, find `dy/dx`
If `y = root{5}{(3x^2 + 8x + 5)^4}, "find" dy/dx`.
Find `dy/(dx)` if, y = `e^(5x^2 - 2x + 4)`