Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
उत्तर
y = (log x)x + (x)logx
Let u = (log x)x and v = xlogx
∴ y = u + v
Differentiating both sides w. r. t. x, we get
`("d"y)/("d"x) = "du"/("d"x) + "dv"/("d"x)` .....(i)
Now, u = (log x)x
Taking logarithm of both sides, we get
log u = log (log x)x = x log (log x)
Differentiating both sides w. r. t. x, we get
`"d"/("d"x)(log "u") = x*"d"/("d"x)[log(logx)] + log(logx)*"d"/("d"x)(x)`
∴ `1/"u"."du"/("d"x) = x*1/(logx)*"d"/("d"x)(log x) + log(logx)*1`
∴ `1/"u"*"du"/("d"x) = x*1/(logx)*1/x + log(log x)`
∴ `"du"/("d"x) = "u"[1/logx + log(logx)]`
∴ `"du"/("d"x) = (log x)^x [1/logx + log(log x)]` .....(ii)
Also, v = xlogx
Taking logarithm of both sides, we get
log v = log (xlogx) = log x (log x)
∴ log v = (log x)2
Differentiating both sides w.r.t. x, we get
`1/"v"*"dv"/("d"x) = 2logx*"d"/("d"x)(log x)`
∴ `1/"v"*"dv"/("d"x) = 2logx*1/x`
Substituting (ii) and (iii) in (i), we get∴ `"d"/("d"x) = "v"[(2logx)/x]`
∴ `"dv"/("d"x) = x^(logx)[(2logx)/x]` ......(iii)
Substituting (ii) and (iii) in (i), we get
`("d"y)/("d"x) = (log x)^x[1/logx + log(logx)] + x^(logx)[(2logx)/x]`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
If y = elogx then `dy/dx` = ?
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`