Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
उत्तर
y = (log x)x + (x)logx
Let u = (log x)x and v = xlogx
∴ y = u + v
Differentiating both sides w. r. t. x, we get
`("d"y)/("d"x) = "du"/("d"x) + "dv"/("d"x)` .....(i)
Now, u = (log x)x
Taking logarithm of both sides, we get
log u = log (log x)x = x log (log x)
Differentiating both sides w. r. t. x, we get
`"d"/("d"x)(log "u") = x*"d"/("d"x)[log(logx)] + log(logx)*"d"/("d"x)(x)`
∴ `1/"u"."du"/("d"x) = x*1/(logx)*"d"/("d"x)(log x) + log(logx)*1`
∴ `1/"u"*"du"/("d"x) = x*1/(logx)*1/x + log(log x)`
∴ `"du"/("d"x) = "u"[1/logx + log(logx)]`
∴ `"du"/("d"x) = (log x)^x [1/logx + log(log x)]` .....(ii)
Also, v = xlogx
Taking logarithm of both sides, we get
log v = log (xlogx) = log x (log x)
∴ log v = (log x)2
Differentiating both sides w.r.t. x, we get
`1/"v"*"dv"/("d"x) = 2logx*"d"/("d"x)(log x)`
∴ `1/"v"*"dv"/("d"x) = 2logx*1/x`
Substituting (ii) and (iii) in (i), we get∴ `"d"/("d"x) = "v"[(2logx)/x]`
∴ `"dv"/("d"x) = x^(logx)[(2logx)/x]` ......(iii)
Substituting (ii) and (iii) in (i), we get
`("d"y)/("d"x) = (log x)^x[1/logx + log(logx)] + x^(logx)[(2logx)/x]`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If xy = 2x – y, then `("d"y)/("d"x)` = ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
If y = x . log x then `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`