हिंदी

Find dydx, if y = (log x)x + (x)logx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx

योग

उत्तर

y = (log x)x + (x)log

Let u = (log x)x and v = xlogx 

∴ y = u + v

Differentiating both sides w. r. t. x, we get

`("d"y)/("d"x) = "du"/("d"x) + "dv"/("d"x)`   .....(i)

Now, u = (log x)x

Taking logarithm of both sides, we get

log u = log (log x)x = x log (log x)

Differentiating both sides w. r. t. x, we get

`"d"/("d"x)(log "u") = x*"d"/("d"x)[log(logx)] + log(logx)*"d"/("d"x)(x)`

∴ `1/"u"."du"/("d"x) = x*1/(logx)*"d"/("d"x)(log x) + log(logx)*1`

∴ `1/"u"*"du"/("d"x) = x*1/(logx)*1/x + log(log x)`

∴ `"du"/("d"x) = "u"[1/logx + log(logx)]`

∴ `"du"/("d"x) = (log x)^x [1/logx + log(log x)]`  .....(ii)

Also, v = xlogx

Taking logarithm of both sides, we get

log v = log (xlogx) = log x (log x)

∴ log v = (log x)2 

Differentiating both sides w.r.t. x, we get

`1/"v"*"dv"/("d"x) = 2logx*"d"/("d"x)(log x)`

∴ `1/"v"*"dv"/("d"x) = 2logx*1/x`

Substituting (ii) and (iii) in (i), we get∴ `"d"/("d"x) = "v"[(2logx)/x]`

∴ `"dv"/("d"x) = x^(logx)[(2logx)/x]`   ......(iii)

Substituting (ii) and (iii) in (i), we get

`("d"y)/("d"x) = (log x)^x[1/logx + log(logx)] + x^(logx)[(2logx)/x]`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.3: Differentiation - Q.5

संबंधित प्रश्न

Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`


Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


Fill in the blank.

If y = y = [log (x)]2  then `("d"^2"y")/"dx"^2 =` _____.


State whether the following is True or False:

The derivative of `log_ax`, where a is constant is `1/(x.loga)`.


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


The derivative of ax is ax log a.


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


If xy = 2x – y, then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `(dy)/(dx)`, if xy = yx 


Find `("d"y)/("d"x)`, if xy = log(xy)


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = x . log x then `dy/dx` = ______.


Find`dy/dx if, y = x^(e^x)`


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx "if", y = x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×