Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
उत्तर
y = [log(log(logx))]2
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x)[log(log(logx))]^2`
= `2[log(log(logx))] xx "d"/("d"x)[log(log(logx))]`
= `2[log(log(logx))] xx 1/(log(logx)) xx "d"/("d"x)[log(logx)]`
= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx "d"/("d"x)(log x)`
= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx 1/x`
∴ `("d"y)/("d"x) = (2[log(log(logx))])/(x(logx)(log(logx)))`
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
The derivative of ax is ax log a.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = x . log x then `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.