Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
उत्तर
y = `"x"^"x" + ("7x" - 1)^"x"`
Let u = xx and v = `("7x" - 1)^"x"`
∴ y = u + v
Differentiating both sides w.r.t.x, we get
`"dy"/"dx" = "du"/"dx" + "dv"/"dx"` ....(i)
Now, u = xx
Taking logarithm of both sides, we get
log u = log(xx)
∴ log u = x. log x
Differentiating both sides w.r.t.x, we get
`1/"u" * "du"/"dx" = "x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"`(x)
`= "x" * 1/"x" + log "x" *` (1)
∴ `1/"u" * "du"/"dx"` = 1 + log x
∴ `"du"/"dx"` = u(1 + log x)
∴ `"d"/"dx" ("x"^"x") = "x"^"x"`(1 + log x) ....(ii)
Also, v = (7x – 1)x
Taking logarithm of both sides, we get
log v = log(7x - 1)x
∴ log v = x. log(7x – 1)
Differentiating both sides w.r.t.x, we get
`1/"v" * "dv"/"dx" = "x" * "d"/"dx" log ("7x" - 1) + log ("7x" - 1) * "d"/"dx"`(x)
`= "x" * 1/("7x" - 1) * "d"/"dx" (7"x" - 1) + log (7"x" - 1) * (1)`
∴ `1/"v" * "dv"/"dx" = "x"/(7"x" - 1) (7 - 0) + log (7"x" - 1)`
∴ `"dv"/"dx" = "v"["7x"/(7"x" - 1) + log(7"x" - 1)]`
∴`"dv"/"dx" = (7"x" - 1)^"x" ["7x"/(7"x" - 1) + log(7"x" - 1)]` ....(iii)
Substituting (ii) and (iii) in (i), we get
`"dy"/"dx" = "x"^"x" (1 + log "x") + (7"x" - 1)^"x" [log(7"x" - 1) + "7x"/(7"x" - 1)]`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = x log x, then `(d^2y)/dx^2`= _____.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
Differentiate log (1 + x2) with respect to ax.
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if xy = log(xy)
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`