Advertisements
Advertisements
प्रश्न
`int 1/(4x^2 - 1) dx` = ______.
उत्तर
`int 1/(4x^2 - 1) dx = bb(underline(1/4log |(2x - 1)/(2x + 1)|)`.
Explanation:
`int 1/(4x^2 - 1) dx = int 1/(4(x^2 - 1/4))dx`
= `1/4 int 1/(x^2 - (1/2)^2)dx`
= `1/4 log|(x - 1/2)/(x + 1/2)|`
= `1/4 log|(2x - 1)/(2x + 1)|`
∴ `int 1/(4x^2 - 1) dx = 1/4 log|(2x - 1)/(2x + 1)|`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
The derivative of ax is ax log a.
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if xy = log(xy)
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = (log x)2 the `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`
Find `dy/(dx)` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.