Advertisements
Advertisements
प्रश्न
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
उत्तर
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/"x"`
Explanation:
0 = log(xy) + a
∴ log(xy) = - a
∴ log x + log y = - a
Differentiating both sides w.r.t.x, we get
`1/"x" + 1/"y" "dy"/"dx" = 0`
∴ `1/"y" * "dy"/"dx" = - 1/"x"`
∴ `"dy"/"dx" = (-"y")/"x"`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
If y = elogx then `dy/dx` = ?
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
If y = x log x, then `(d^2y)/dx^2`= _____.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
If y = (log x)2 the `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, y = `x^(e^x)`