Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
उत्तर
y = xx + (7x – 1)x
Let u = xx and v = (7x – 1)x
∴ y = u + v
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "du"/("d"x) + "dv"/("d"x)` ......(i)
Now, u = xx
Taking logarithm of both sides, we get
log u = log (xx)
∴ log u = x. log x
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(log "u") = x*"d"/("d"x)(log x) + logx*"d"/("d"x)(x)`
∴ `1/"u"*"du"/("d"x) = x*1/x + logx*1`
∴ `1/"u"*"du"/("d"x)` = 1 + log x
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x)` = xx(1 + log x) ......(ii)
Also, v = (7x – 1)x
Taking logarithm of both sides, we get
log v = log(7x – 1)x
∴ log v = x.log(7x – 1)
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(log "v") = x*"d"/("d"x)[log(7x - 1)] + log(7x - 1)*"d"/("d"x)(x)`
∴ `1/"v"*"dv"/("d"x) = x*1/(7x - 1)*"d"/("d"x)(7x- 1) + log(7x - 1)*1`
∴ `1/"v"*"dv"/("d"x) = x/(7x - 1)(7 - 0) + log(7x - 1)`
∴ `"dv"/("d"x) = "v"[(7x)/(7x - 1) + log(7x - 1)]`
∴ `"dv"/("d"x) = (7x - 1)^x[(7x)/(7x - 1) + log(7x - 1)]` .....(iii)
Substituting (ii) and (iii) in (i), we get
`("d"y)/("d"x) = x^x(1 + logx) + (7x - 1)^x[log(7x - 1) + (7x)/(7x - 1)]`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
If y = x . log x then `dy/dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.