Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
उत्तर
y = `"x"^("x"^"2x")`
Taking logarithm of both sides, we get
log y = log`("x")^("x"^"2x")`
∴ log y = `"x"^"2x" * log "x"`
Differentiating both sides w.r.t.x, we get
`1/"y" * "dy"/"dx" = "x"^"2x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"("x"^"2x")`
∴ `1/"y"*"dy"/"dx" = "x"^"2x" * 1/"x" + log "x" * "d"/"dx"("x"^"2x")` .....(i)
Let u = `"x"^"2x"`
Taking logarithm of both sides, we get
log u = `log "x"^"2x" = "2x" * log"x"`
Differentiating both sides w.r.t.x, we get
`1/"u" * "du"/"dx" = "2x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"(2"x")`
∴ `1/"u" * "du"/"dx" = "2x" * 1/"x" + log "x" * (2)`
∴ `1/"u" * "du"/"dx"` = 2 + 2 log x
∴ `"du"/"dx"` = u(2 + 2 log x)
∴ `"du"/"dx"` = 2u(1 + log x)
∴ `"du"/"dx" = "2x"^"2x" (1 + log "x")` ....(ii)
Substituting (ii) in (i), we get
`1/"y" * "dy"/"dx" = "x"^(2"x") * 1/"x" + (log "x")(2"x"^"2x")`(1 + log x)
∴ `"dy"/"dx" = "y"["x"^"2x"/"x" + 2"x"^(2"x") * log "x"(1 + log "x")]`
∴ `"dy"/"dx" = "x"^("x"^"2x") * "x"^"2x" log "x"[1/("x log x") + 2 (1 + log "x")]`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = elogx then `dy/dx` = ?
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`