Advertisements
Advertisements
प्रश्न
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
उत्तर
x2ydx – (x3 – y3)dy = 0
∴ x2ydx = (x3 + y3 )dy
∴ `dy/dx = (x^2y)/(x^3 + y^3)` ...(i)
Put y = tx ...(ii)
Differentiating w.r.t x,
∴ `dy/dx = t + x dt/dx` ...(iii)
Substituting (iii) and (ii) in (i), we get
∴ `t + x dt/dx = (tx^3)/(x^3 + t^3x^3)`
∴ `t + x dt/dx = t/(1 + t^3)`
∴ `(x.dt)/dx = t/(1 + t^3) - t`
∴ `(x.dt)/dx = (t - t - t^4)/( 1 + t^3)`
∴ `(x.dt)/dx = (-t^4)/(1 + t^3)`
∴ `(1 + t^3)/t^4.dt = - dx/x`
Integrating on both sides. we get
`int (1 + t^3)/t^4 dt = - int 1/x dx`
∴ `int (1/t^4 + 1/t)dt = -int 1/x dx`
∴ `int t^-4dt + int 1/t dt = - int 1/x dx`
∴ `t^-3/(-3) + log |t|` = –log |x| + log |c1|
∴ `- 1/(3t^3) + log""|t|` = –log |x| + log |c1|
∴ `(-1)/(+3). 1/(y/x)^3 + log"|y/x|` = –log |x| + log |c1|
∴ `- x^3/(3y^3) + log"|y| - log"|x|` = –log |x| + log |c1|
∴ log |y| + log |c| = `x^3/(3y^3)`
Where [–log |c1| = log |c|]
∴ log |yc| = `x^3/(3y^3)`
This is the general solution.
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
The derivative of ax is ax log a.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `(dy)/(dx)`, if xy = yx
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
`int 1/(4x^2 - 1) dx` = ______.
If y = x . log x then `dy/dx` = ______.
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`