Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
उत्तर
y = `x^(x^x)`
Taking logarithm of both sides, we get
log y = `log x^(x^x)`
∴ log y = xx log x
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(log y) = x^x*"d"/("d"x)(log x) + logx*"d"/("d"x)(x^x)`
∴ `1/y*("d"y)/("d"x) = x^x*1/x + logx*"d"/("d"x)(x^x)` ......(i)
Let u = xx
Taking logarithm of both sides, we get
log u = log xx
∴ log u = x log x
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(log "u") = x*"d"/("d"x)(log x) + logx*"d"/("d"x)(x)`
∴ `1/"u"*"du"/("d"x) = x*1/x + logx*1`
∴ `1/"u"*"du"/("d"x)` = 1 + log x
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"d"/("d"x)(x^x)` = xx(1 + log x) ......(ii)
Substituting (ii) in (i), we get
`1/y*("d"y)/("d"x) = x^x*1/x + logx*x^x(1 + log x)`
∴ `("d"y)/("d"x) = yx^x[1/x + logx(1 + logx)]`
∴ `("d"y)/("d"x) = x^(x^x)*x^x[1/x + logx(1 + logx)]`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = elogx then `dy/dx` = ?
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Differentiate log (1 + x2) with respect to ax.
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
`int 1/(4x^2 - 1) dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`
Find `dy/(dx)` if, `y = x^(e^x)`