Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
उत्तर
y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
= `(3x - 1)^(1/3)/((2x + 3)^(1/3)*(5 - x)^(2/3)`
Taking logarithm of both sides, we get
log y = `log[(3x - 1)^(1/3)/((2x - 3)^(1/3)*(5 - x)^(2/3))]`
= `log(3x - 1)^(1/3) - [log(2x + 3)^(1/3) + log(5 - x)^(2/3)]`
= `1/3log(3x - 1) - [1/3 log(2x + 3) + 2/3log(5 - x)]`
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(log y) = 1/3*"d"/("d"x)[log(3x - 1)] - 1/3*"d"/("d"x)[log(2x + 3)] - 2/3*"d"/("d"x)[log(5 - x)]`
∴ `1/y*("d"y)/("d"x) = 1/3*1/((3x - 1))*"d"/("d"x)(3x - 1) - 1/3*1/((2x + 3))*"d"/("d"x)(2x + 3) - 2/3*1/((5 - x))*"d"/("d"x)(5 - x)`
∴ `1/y*("d"y)/("d"x) = 1/(3(3x - 1)) xx (3 - 0) - 1/(3(2x + 3)) xx (2 + 0) - 2/(3(5 - x)) xx (0 - 1)`
∴ `1/y*("d"y)/("d"x) = 1/(3x - 1)- 2/(3(2x + 3)) + 2/(3(5 - x))`
∴ `("d"y)/("d"x) = y/3[3/(3x - 1) - 2/(2x + 3) + 2/(5 - x)]`
∴ `("d"y)/("d"x) = 1/3 root(3)((3x - 1)/((2x + 3)*(5 - x)^2)) [3/(3x - 1) - 2/(2x + 3) + 2/(5 - x)]`
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
If y = elogx then `dy/dx` = ?
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.