मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydx, if y = (3x-1)(2x+3)(5-x)23 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`

बेरीज

उत्तर

y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`

= `(3x - 1)^(1/3)/((2x + 3)^(1/3)*(5 - x)^(2/3)`

Taking logarithm of both sides, we get

log y = `log[(3x - 1)^(1/3)/((2x - 3)^(1/3)*(5 - x)^(2/3))]`

= `log(3x - 1)^(1/3) - [log(2x + 3)^(1/3) + log(5 - x)^(2/3)]`

= `1/3log(3x - 1) - [1/3 log(2x + 3) + 2/3log(5 - x)]`

Differentiating both sides w.r.t. x, we get

`"d"/("d"x)(log y) = 1/3*"d"/("d"x)[log(3x - 1)] - 1/3*"d"/("d"x)[log(2x + 3)] - 2/3*"d"/("d"x)[log(5 - x)]`

∴ `1/y*("d"y)/("d"x) = 1/3*1/((3x - 1))*"d"/("d"x)(3x - 1) - 1/3*1/((2x + 3))*"d"/("d"x)(2x + 3) - 2/3*1/((5 - x))*"d"/("d"x)(5 - x)`

∴ `1/y*("d"y)/("d"x) = 1/(3(3x - 1)) xx (3 - 0) - 1/(3(2x + 3)) xx (2 + 0) - 2/(3(5 - x)) xx (0 - 1)`

∴ `1/y*("d"y)/("d"x) = 1/(3x - 1)- 2/(3(2x + 3)) + 2/(3(5 - x))` 

∴ `("d"y)/("d"x) = y/3[3/(3x - 1) - 2/(2x + 3) + 2/(5 - x)]`

∴ `("d"y)/("d"x) = 1/3 root(3)((3x - 1)/((2x + 3)*(5 - x)^2)) [3/(3x - 1) - 2/(2x + 3) + 2/(5 - x)]`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.3: Differentiation - Q.5

संबंधित प्रश्‍न

Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`


Find `dy/dx`if, y = `(x)^x + (a^x)`.


If y = elogx then `dy/dx` = ?


The derivative of ax is ax log a.


Solve the following:

If y = [log(log(logx))]2, find `"dy"/"dx"`


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


If u = 5x and v = log x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if xy = log(xy)


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


Solve the following differential equations:

x2ydx – (x3 – y3)dy = 0


If y = x . log x then `dy/dx` = ______.


If y = (log x)2 the `dy/dx` = ______.


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx , if y^x = e^(x+y)`


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx "if", y = x^(e^x)`


Find `dy/(dx)` if, `y = x^(e^x)`


Find `dy/(dx)` if, `x = e^(3t),  y = e^sqrtt`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×