Advertisements
Advertisements
प्रश्न
Find `dy/dx`if, y = `(x)^x + (a^x)`.
उत्तर
y = `(x)^x + (a^x)`
Let u = (x)x and v = (ax)
∴ y = u + v
Differentiating both sides w.r.t.x, we get
`dy/dx = (du)/dx + (dv)/dx` ....(i)
Now u = `(x)^x`
Taking logarithm of both sides, we get
log u = log `(x)^x`
∴ log u = x . log x
Differentiating both sides w.r.t.x, we get
`1/u (du)/dx = x * d/dx (log x) + log x * d/dx(x)`
`= x * 1/x + log x * (1)`
∴ `1/u (du)/dx = 1 + log x`
∴ `(du)/dx = u(1 + log x)`
∴ `(du)/dx = (x)^x` (1 + log x) ....(ii)
v = ax
Differentiating both sides w.r.t.x, we get
`(dv)/dx = a^x* log a` ....(iii)
Substituting (ii) and (iii) in (i), we get
`dy/dx = x^x(1 + log x) + a^x* log a`
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
If u = 5x and v = log x, then `("du")/("dv")` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
If y = x . log x then `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`