Advertisements
Advertisements
प्रश्न
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
उत्तर
x = `sqrt(1 + "u"^2)`
Differentiating both sides w.r.t. u, we get
`("d"x)/"du" = "d"/"du"(sqrt(1 + "u"^2))`
= `1/(2sqrt(1 + "u"^2))*"d"/"du"(1 + "u"^2)`
= `1/(2sqrt(1 + "u"^2)) xx (0 + 2"u")`
= `"u"/sqrt(1 + "u"^2)`
y = log(1 + u2)
Differentiating both sides w.r.t. u, we get
`("d"y)/"du" = "d"/"du"[log(1 + "u"^2)]`
= `1/(1 + "u"^2)*"d"/"du"(1 + "u"^2)`
= `1/(1 + "u"^2) xx (0 + 2"u") = (2"u")/(1 + "u"^2)`
∴ `("d"y)/("d"x) = ((("d"y)/"du"))/((("d"x)/("du"))) = (((2"u")/(1 + "u"^2)))/(("u"/sqrt(1 + "u"^2))`
= `2/(1 + "u"^2) xx sqrt(1 + "u"^2)`
∴ `("d"y)/("d"x) = 2/sqrt(1 + "u"^2)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
If y = elogx then `dy/dx` = ?
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
If y = x . log x then `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`