मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Fill in the blank. If y = y = [log (x)]2 then dydxd2ydx2= _____. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fill in the blank.

If y = y = [log (x)]2  then `("d"^2"y")/"dx"^2 =` _____.

रिकाम्या जागा भरा
बेरीज

उत्तर

If y = y = [log (x)]2  then `("d"^2"y")/"dx"^2 =(2(1 − log x))/x^2 `.

Explanation:

y = (log x)2

On differentiating w.r.t. x, we get,

`dy/dx = 2 log x d/dx (log x)`

`dy/dx = 2 log x. 1/x`

`dy/dx = (2log x)/x`

Again differentiating w.r to x, we get,

`(d^2y)/(dx^2) = 2 d/dx ((log x)/x)`

`(d^2y)/(dx^2) = 2 ((x d/dx (log x) − log x d/dx x)/x^2)`

`(d^2y)/(dx^2) = 2 ((x × 1/x − log x × 1)/x^2)`

`(d^2y)/(dx^2) = (2(1 − log x))/x^2`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ १००]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q II] 6) | पृष्ठ १००

संबंधित प्रश्‍न

Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`


Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`


Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`


Find `dy/dx`if, y = `(x)^x + (a^x)`.


If y = elogx then `dy/dx` = ?


State whether the following is True or False:

The derivative of `log_ax`, where a is constant is `1/(x.loga)`.


The derivative of ax is ax log a.


If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if xy = log(xy)


If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


Solve the following differential equations:

x2ydx – (x3 – y3)dy = 0


Find`dy/dx if, y = x^(e^x)`


Find `dy/dx  "if",  y = x^(e^x)`


Find `dy/dx if, y =  x^(e^x)`


Find `dy / dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×