Advertisements
Advertisements
प्रश्न
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
उत्तर
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is `bbunderline( "a"^((1 + log "x")) log "a"*1/x)`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
If y = x . log x then `dy/dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.