मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydx, if xy = yx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `(dy)/(dx)`, if xy = yx 

बेरीज

उत्तर

Given xy = yx 

Taking logarithm of both sides, we get

log xy = log yx

∴ y log x = x log y

Differentiating both sides w.r.t.x, we get

`d/(dx)(ylogx) = d/(dx)(xlogy)`

∴ `y.d/(dx)(logx) + d/(dx)(y) = x.d/(dx)(logy) + logy. d/(dx)(x)`

∴ `y. 1/x + logx.(dy)/(dx) = x. 1/y.(dy)/(dx) + logy.1`

∴ `(logx - x/y)(dy)/(dx) = (logy - y/x)`

∴ `((ylogx - x)/y) (dy)/(dx) = (xlogy - y)/x`

∴ `(dy)/(dx) = ((xlogy - y)/x) xx (y/(ylogx - x))`

∴ `(dy)/(dx) = y/x((xlogy - y)/(ylogx - x))`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.3: Differentiation - Q.4

संबंधित प्रश्‍न

Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`


Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`


Find `dy/dx`if, y = `(x)^x + (a^x)`.


Fill in the blank.

If x = t log t and y = tt, then `"dy"/"dx"` = ____


Fill in the blank.

If y = y = [log (x)]2  then `("d"^2"y")/"dx"^2 =` _____.


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


The derivative of ax is ax log a.


Solve the following:

If y = [log(log(logx))]2, find `"dy"/"dx"`


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


If xy = 2x – y, then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


`int 1/(4x^2 - 1) dx` = ______.


If y = (log x)2 the `dy/dx` = ______.


Find`dy/dx if, y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy / dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx "if", y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/(dx)  "if", y = x^(e^(x))` 


Find `dy/(dx)` if, `y = x^(e^x)`


Find `dy/(dx)` if, `x = e^(3t),  y = e^sqrtt`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×