Advertisements
Advertisements
Question
Find `(dy)/(dx)`, if xy = yx
Solution
Given xy = yx
Taking logarithm of both sides, we get
log xy = log yx
∴ y log x = x log y
Differentiating both sides w.r.t.x, we get
`d/(dx)(ylogx) = d/(dx)(xlogy)`
∴ `y.d/(dx)(logx) + d/(dx)(y) = x.d/(dx)(logy) + logy. d/(dx)(x)`
∴ `y. 1/x + logx.(dy)/(dx) = x. 1/y.(dy)/(dx) + logy.1`
∴ `(logx - x/y)(dy)/(dx) = (logy - y/x)`
∴ `((ylogx - x)/y) (dy)/(dx) = (xlogy - y)/x`
∴ `(dy)/(dx) = ((xlogy - y)/x) xx (y/(ylogx - x))`
∴ `(dy)/(dx) = y/x((xlogy - y)/(ylogx - x))`
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = elogx then `dy/dx` = ?
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if xy = log(xy)
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
If y = x . log x then `dy/dx` = ______.
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx if, y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`