Advertisements
Advertisements
Question
Find `"dy"/"dx"`if, y = (2x + 5)x
Solution
y = (2x + 5)x
Taking logarithm of both sides, we get
log y = log (2x + 5)x
∴ log y = x * log (2x + 5)
Differentiating both sides w.r.t.x, we get
`1/"y" "dy"/"dx" = "x" * "d"/"dx"[log (2"x" + 5)] + log ("2x" + 5) * "d"/"dx" ("x")`
`= "x" * 1/("2x" + 5) * "d"/"dx" ("2x" + 5) + log (2"x" + 5) * (1)`
`= "x"/("2x" + 5) * (2 + 0) + log (2"x" + 5)`
∴ `1/"y" "dy"/"dx" = "2x"/("2x" + 5) + log ("2x" + 5)`
∴ `"dy"/"dx" = "y"["2x"/("2x" + 5) + log ("2x" + 5)]`
∴ `"dy"/"dx" = ("2x" + 5)^"x" [log ("2x" + 5) + "2x"/("2x" + 5)]`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If u = 5x and v = log x, then `("du")/("dv")` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`