English

Find dydxif, y = (2x + 5)x - Mathematics and Statistics

Advertisements
Advertisements

Question

Find `"dy"/"dx"`if, y = (2x + 5)x 

Sum

Solution

y = (2x + 5)x 

Taking logarithm of both sides, we get

log y = log (2x + 5)x 

∴ log y = x * log (2x + 5)

Differentiating both sides w.r.t.x, we get

`1/"y" "dy"/"dx" = "x" * "d"/"dx"[log (2"x" + 5)] + log ("2x" + 5) * "d"/"dx" ("x")`

`= "x" * 1/("2x" + 5) * "d"/"dx" ("2x" + 5) + log (2"x" + 5) * (1)`

`= "x"/("2x" + 5) * (2 + 0) + log (2"x" + 5)`

∴ `1/"y" "dy"/"dx" = "2x"/("2x" + 5) + log ("2x" + 5)`

∴ `"dy"/"dx" = "y"["2x"/("2x" + 5) + log ("2x" + 5)]`

∴ `"dy"/"dx" = ("2x" + 5)^"x" [log ("2x" + 5) + "2x"/("2x" + 5)]`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 3: Differentiation - EXERCISE 3.3 [Page 94]

APPEARS IN

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


Solve the following:

If y = [log(log(logx))]2, find `"dy"/"dx"`


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


If u = 5x and v = log x, then `("du")/("dv")` is ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = `x^(x^x)`


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


Solve the following differential equations:

x2ydx – (x3 – y3)dy = 0


`int 1/(4x^2 - 1) dx` = ______.


Find`dy/dx if, y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx,"if"  y=x^x+(logx)^x`


Find `dy / dx` if, `y = x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×