Advertisements
Advertisements
Question
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Solution
Let y = x(x) + 20(x)
Let u = `x^x` and v = `20^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = "du"/("d"x) + "dv"/("d"x)` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/x + log x xx 1`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + log x)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^x*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = (2x + 5)x
If y = elogx then `dy/dx` = ?
If y = x log x, then `(d^2y)/dx^2`= _____.
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
Differentiate log (1 + x2) with respect to ax.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`