Advertisements
Advertisements
Question
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Solution
xa .yb = `(x + y)^((a + b))`
Taking logarithm of both sides, we get
log(xa.yb) = log(x + y)a+b
∴ log xa + log yb = (a + b) log (x + y)
∴ a log x + b log y = (a + b) log (x + y)
Differentiating both sides w.r.t. x, we get
`"a"*1/x + "b"*1/y*("d"y)/("d"x) = ("a" + "b")*1/(x + y)*"d"/("d"x)(x + y)`
∴ `"a"/x + "b"/y*("d"y)/("d"x) = ("a" + "b")/(x + y)(1 + ("d"y)/("d"x))`
∴ `"a"/x + "b"/y*("d"y)/("d"x) = ("a" + "b")/(x + y) + ("a" + "b")/(x + y) . ("d"y)/("d"x)`
∴ `"b"/y*("d"y)/("d"x) - ("a" + "b")/(x + y)*("d"y)/("d"x) = ("a" + "b")/(x + y) - "a"/x`
∴ `("b"/y - ("a" + "b")/(x + y)) ("d"y)/("d"x) = ("a" + "b")/(x + y) - "a"/x`
∴ `[("b"x + "b"y - "a"y - "b"y)/(y(x + y))]("d"y)/("d"x) = ("a"x + "b"x - "a"x - "a"y)/(x(x + y))`
∴ `[("b"x - "a"y)/(y(x + y))]("d"y)/("d"x) = ("b"x - "a"y)/(x(x + y))`
∴ `("d"y)/("d"x) = ("b"x - "a"y)/(x(x + y)) xx (y(x + y))/("b"x - "a"y)`
∴ `("d"y)/("d"x) = y/x`
APPEARS IN
RELATED QUESTIONS
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
Differentiate log (1 + x2) with respect to ax.
If u = 5x and v = log x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if xy = log(xy)
If y = (log x)2 the `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`