Advertisements
Advertisements
Question
If y = x log x, then `(d^2y)/dx^2`= _____.
Solution
If y = x log x, then `(d^2y)/dx^2`= `bb(underline(1/x))`
Explanation:
y = x log x
Differentiating both sides,
`dy/dx = x * d/dx(logx) + logx * d/dx(x)`
= `x * 1/x + logx` = 1 + logx
Again differentiating w.r.t.x,
`d/dx(dy/dx) = d/dx(1) + d/dx(logx)`
`(d^2y)/(dx^2) = 0 + 1/x = 1/x`
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = elogx then `dy/dx` = ?
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
`int 1/(4x^2 - 1) dx` = ______.
If y = x . log x then `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`