Advertisements
Advertisements
Question
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Solution
If x = t log t and y = tt, then `"dy"/"dx"` = y.
Explanation:
x = t . log t ....(i)
y = tt
Taking logarithm of both sides, we get
log y = t . log t
∴ log y = x ....[From (i)]
∴ y = `"e"^"x"` ...(ii)
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "e"^"x"`
∴ `"dy"/"dx" = "y"` ....[From (ii)]
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If xy = 2x – y, then `("d"y)/("d"x)` = ______
Find `(dy)/(dx)`, if xy = yx
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
If y = x . log x then `dy/dx` = ______.
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`