English

If x = t.logt, y = tt, then show that dydx = tt - Mathematics and Statistics

Advertisements
Advertisements

Question

If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt 

Sum

Solution

x = t.logt    ......(i)

y = tt     ......(ii)

Taking logarithm of both sides, we get

log y = log tt

∴ log y = t.logt

∴ log y = x      ......[From (i)]

Differentiating both sides w.r.t. x, we get

`1/y*("d"y)/("d"x)` = 1

∴ `("d"y)/("d"x)` = y

∴ `("d"y)/("d"x)` = tt     ......[From (ii)]

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  Is there an error in this question or solution?
Chapter 1.3: Differentiation - Q.4

RELATED QUESTIONS

Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`


Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`


Find `dy/dx`if, y = `(x)^x + (a^x)`.


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


State whether the following is True or False:

If y = log x, then `"dy"/"dx" = 1/"x"`


State whether the following is True or False:

If y = e2, then `"dy"/"dx" = 2"e"`


Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`


If u = 5x and v = log x, then `("du")/("dv")` is ______


Find `("d"y)/("d"x)`, if xy = log(xy)


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = x . log x then `dy/dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx , if y^x = e^(x+y)`


Find `dy/dx,"if"  y=x^x+(logx)^x`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/(dx)  "if", y = x^(e^(x))` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×