Advertisements
Advertisements
Question
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Solution
x = t.logt ......(i)
y = tt ......(ii)
Taking logarithm of both sides, we get
log y = log tt
∴ log y = t.logt
∴ log y = x ......[From (i)]
Differentiating both sides w.r.t. x, we get
`1/y*("d"y)/("d"x)` = 1
∴ `("d"y)/("d"x)` = y
∴ `("d"y)/("d"x)` = tt ......[From (ii)]
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
If y = x . log x then `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`