Advertisements
Advertisements
Question
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Solution
y = xx + (7x – 1)x
Let u = xx and v = (7x – 1)x
∴ y = u + v
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "du"/("d"x) + "dv"/("d"x)` ......(i)
Now, u = xx
Taking logarithm of both sides, we get
log u = log (xx)
∴ log u = x. log x
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(log "u") = x*"d"/("d"x)(log x) + logx*"d"/("d"x)(x)`
∴ `1/"u"*"du"/("d"x) = x*1/x + logx*1`
∴ `1/"u"*"du"/("d"x)` = 1 + log x
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x)` = xx(1 + log x) ......(ii)
Also, v = (7x – 1)x
Taking logarithm of both sides, we get
log v = log(7x – 1)x
∴ log v = x.log(7x – 1)
Differentiating both sides w.r.t. x, we get
`"d"/("d"x)(log "v") = x*"d"/("d"x)[log(7x - 1)] + log(7x - 1)*"d"/("d"x)(x)`
∴ `1/"v"*"dv"/("d"x) = x*1/(7x - 1)*"d"/("d"x)(7x- 1) + log(7x - 1)*1`
∴ `1/"v"*"dv"/("d"x) = x/(7x - 1)(7 - 0) + log(7x - 1)`
∴ `"dv"/("d"x) = "v"[(7x)/(7x - 1) + log(7x - 1)]`
∴ `"dv"/("d"x) = (7x - 1)^x[(7x)/(7x - 1) + log(7x - 1)]` .....(iii)
Substituting (ii) and (iii) in (i), we get
`("d"y)/("d"x) = x^x(1 + logx) + (7x - 1)^x[log(7x - 1) + (7x)/(7x - 1)]`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Differentiate log (1 + x2) with respect to ax.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
Find `(dy)/(dx)`, if xy = yx
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
`int 1/(4x^2 - 1) dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`