Advertisements
Advertisements
Question
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Solution
y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
`= ("3x" - 1)^(1/3)/(("2x" + 3)^(1/3)*(5 - "x")^(2/3))`
Taking logarithm of both sides, we get
log y = `log[("3x" - 1)^(1/3)/(("2x" + 3)^(1/3)*(5 - "x")^(2/3))]`
`= log ("3x" - 1)^(1/3) - [log ("2x" + 3)^(1/3) + log (5 - "x")^(2/3)]`
`= 1/3 log ("3x" - 1) - [1/3 log ("2x" + 3) + 2/3 log (5 - "x")]`
Differentiating both sides w.r.t. x, we get
`1/"y" "dy"/"dx" = 1/3 * "d"/"dx" [log ("3x" - 1)] - 1/3 * "d"/"dx" [log (2"x" + 3)] - 2/3 * "d"/"dx" [log (5 - "x")]`
`= 1/3 * 1/("3x" - 1)*"d"/"dx" ("3x" - 1) - 1/3 * 1/("2x + 3") * "d"/"dx" ("2x" + 3) - 2/3 * 1/("5 - x") * "d"/"dx" (5 - "x")`
`= 1/(3(3"x" - 1)) xx 3 - 1/(3(2"x" + 3)) xx 2 - 2/(3(5 - "x")) xx -1`
∴ `1/"y" "dy"/"dx" = 1/("3x" - 1) - 2/(3("2x" + 3)) + 2/(3(5 - "x"))`
∴ `"dy"/"dx" = "y"/3 [3/("3x" - 1) - 2/("2x" + 3) + 2/(5 - "x")]`
∴ `"dy"/"dx" = 1/3 * root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2)) [3/("3x" - 1) - 2/("2x" + 3) + 2/(5 - "x")]`
APPEARS IN
RELATED QUESTIONS
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
The derivative of ax is ax log a.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
`int 1/(4x^2 - 1) dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.