Advertisements
Advertisements
Question
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Solution
y = `(log "x"^"x") + "x"^(log "x")`
Let u = `(log "x"^"x")` and v = `"x"^(log "x")`
∴ y = u + v
Differentiating both sides w. r. t. x, we get
`"dy"/"dx" = "du"/"dx" + "dv"/"dx"` ....(i)
Now, u = `(log "x"^"x")`
Taking logarithm of both sides, we get
log u = log `(log "x"^"x")` = x log (log x)
Differentiating both sides w. r. t. x, we get
`"d"/"dx" (log "u") = "x" "d"/"dx" [log (log "x")] + log (log "x") "d"/"dx" ("x")`
∴ `1/"u" * "du"/"dx" = "x"*1/(log "x") * "d"/"dx" (log "x") + log (log "x") * 1`
∴ `1/"u" * "du"/"dx" = "x"*1/(log "x") * 1/"x" + log (log "x")`
∴ `"du"/"dx" = "u" [1/(log "x") + log(log "x")]`
∴ `"du"/"dx" = (log "x"^"x") [1/(log "x") + log(log "x")]` ....(ii)
v = `"x"^(log "x")`
Taking logarithm of both sides, we get
log v = log `("x"^(log "x"))` = log x (log x)
∴ log v = (log x)2
Differentiating both sides w.r.t. x, we get
`1/"v" * "dv"/"dx" = 2 log "x" * "d"/"dx" (log "x")`
∴ `1/"v" * "dv"/"dx" = 2 log "x" * 1/"x"`
∴ `"dv"/"dx" = "v"[(2 log "x")/"x"]`
∴ `"dv"/"dx" = "x"^(log "x") [(2 log "x")/"x"]` ....(iii)
Substituting (ii) and (iii) in (i), we get
`"dy"/"dx" = (log "x"^"x") [1/(log "x") + log(log "x")] + "x"^(log "x") [(2 log "x")/"x"]`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
If y = x . log x then `dy/dx` = ______.
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`