Advertisements
Advertisements
Question
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Solution
y = `(1 + 1/"x")^"x"`
Taking logarithm of both sides, we get
log y = `log(1 + 1/"x")^"x"`
∴ log y = x `log(1 + 1/"x")`
Differentiating both sides w.r.t.x, we get
`1/"y" * "dy"/"dx" = "x" * "d"/"dx" log(1 + 1/"x") + log(1 + 1/"x") * "d"/"dx" ("x")`
∴ `1/"y" * "dy"/"dx" = "x" * 1/(1 + 1/"x") * "d"/"dx" (1 + 1/"x") + log (1 + 1/"x") * (1)`
∴ `1/"y" * "dy"/"dx" = "x"/(("x" + 1)/"x") * (0 - 1/"x"^2) + log (1 + 1/"x")`
∴ `1/"y" * "dy"/"dx" = "x"^2/("x + 1") * ((-1)/"x"^2) + log (1 + 1/"x")`
∴ `1/"y" * "dy"/"dx" = (- 1)/("x + 1") + log (1 + 1/"x")`
∴ `"dy"/"dx" = "y"[(-1)/("x + 1") + log (1 + 1/"x")]`
∴ `"dy"/"dx" = (1 + 1/"x")^"x" * [log (1 + 1/"x") - 1/("x + 1")]`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = elogx then `dy/dx` = ?
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the blank.
If y = y = [log (x)]2 then `("d"^2"y")/"dx"^2 =` _____.
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if xy = log(xy)
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`