Advertisements
Advertisements
Question
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Solution
y = [log(log(logx))]2
Differentiating both sides w.r.t. x, we get
`("d"y)/("d"x) = "d"/("d"x)[log(log(logx))]^2`
= `2[log(log(logx))] xx "d"/("d"x)[log(log(logx))]`
= `2[log(log(logx))] xx 1/(log(logx)) xx "d"/("d"x)[log(logx)]`
= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx "d"/("d"x)(log x)`
= `2[log(log(logx))] xx 1/(log(logx)) xx 1/logx xx 1/x`
∴ `("d"y)/("d"x) = (2[log(log(logx))])/(x(logx)(log(logx)))`
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
The derivative of ax is ax log a.
Find `"dy"/"dx"` if y = `sqrt(((3"x" - 4)^3)/(("x + 1")^4("x + 2")))`
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If u = 5x and v = log x, then `("du")/("dv")` is ______
Find `(dy)/(dx)`, if xy = yx
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
`int 1/(4x^2 - 1) dx` = ______.
If y = (log x)2 the `dy/dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.