Advertisements
Advertisements
Question
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Solution
y = `"e"^("x"^"x")`
Taking the logarithm of both sides, we get
log y = log `"e"^("x"^"x") = "x"^"x" log "e"`
∴ log y = `"x"^"x"`
Differentiating both sides w.r.t.x, we get
`1/"y" * "dy"/"dx" = "d"/"dx" ("x"^"x")` .....(i)
Let u = `"x"^"x"`
Taking logarithm of both sides, we get
log u = `log "x"^"x" = "x" log "x"`
Differentiating both sides w. r. t. x, we get
`1/"u" * "du"/"dx" = "x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"("x")`
∴ `1/"u" * "du"/"dx" = "x" * 1/"x" + log "x" * (1)`
∴ `1/"u" * "du"/"dx"` = 1 + log x
∴ `"du"/"dx" = "u"(1 + log "x")`
∴ `"du"/"dx" = "x"^"x"`(1 + log "x") .....(ii)
Substituting (ii) in (i), we get
`1/"y" * "dy"/"dx" = "x"^"x"`(1 + log x)
∴ `"dy"/"dx" = "y" "x"^"x" (1 + log "x") = "e"^("x"^"x") * "x"^"x" (1 + log "x")`
APPEARS IN
RELATED QUESTIONS
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`