Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
उत्तर
y = `"e"^("x"^"x")`
Taking the logarithm of both sides, we get
log y = log `"e"^("x"^"x") = "x"^"x" log "e"`
∴ log y = `"x"^"x"`
Differentiating both sides w.r.t.x, we get
`1/"y" * "dy"/"dx" = "d"/"dx" ("x"^"x")` .....(i)
Let u = `"x"^"x"`
Taking logarithm of both sides, we get
log u = `log "x"^"x" = "x" log "x"`
Differentiating both sides w. r. t. x, we get
`1/"u" * "du"/"dx" = "x" * "d"/"dx" (log "x") + log "x" * "d"/"dx"("x")`
∴ `1/"u" * "du"/"dx" = "x" * 1/"x" + log "x" * (1)`
∴ `1/"u" * "du"/"dx"` = 1 + log x
∴ `"du"/"dx" = "u"(1 + log "x")`
∴ `"du"/"dx" = "x"^"x"`(1 + log "x") .....(ii)
Substituting (ii) in (i), we get
`1/"y" * "dy"/"dx" = "x"^"x"`(1 + log x)
∴ `"dy"/"dx" = "y" "x"^"x" (1 + log "x") = "e"^("x"^"x") * "x"^"x" (1 + log "x")`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
`int 1/(4x^2 - 1) dx` = ______.
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx,"if" y=x^x+(logx)^x`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`