हिंदी

Fill in the blank. If x = t log t and y = tt, then dydx = ____ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fill in the blank.

If x = t log t and y = tt, then `"dy"/"dx"` = ____

रिक्त स्थान भरें

उत्तर

If x = t log t and y = tt, then `"dy"/"dx"` = y.

Explanation:

x = t . log t        ....(i)

y = tt 

Taking logarithm of both sides, we get

log y = t . log t

∴ log y = x         ....[From (i)]

∴ y = `"e"^"x"`        ...(ii)

Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = "e"^"x"`

∴ `"dy"/"dx" = "y"`             ....[From (ii)]

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ १००]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q II] 9) | पृष्ठ १००
बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q II] 4) | पृष्ठ ९९

संबंधित प्रश्न

Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = (2x + 5)x 


Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`


Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`


If y = elogx then `dy/dx` = ?


Fill in the blank.

If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____


The derivative of ax is ax log a.


Solve the following:

If y = [log(log(logx))]2, find `"dy"/"dx"`


Choose the correct alternative:

If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?


If xy = 2x – y, then `("d"y)/("d"x)` = ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


Find`dy/dx if, y = x^(e^x)`


Find `dy/dx  "if",y=x^(e^x) `


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy / dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×