Advertisements
Advertisements
प्रश्न
Fill in the blank.
If x = t log t and y = tt, then `"dy"/"dx"` = ____
उत्तर
If x = t log t and y = tt, then `"dy"/"dx"` = y.
Explanation:
x = t . log t ....(i)
y = tt
Taking logarithm of both sides, we get
log y = t . log t
∴ log y = x ....[From (i)]
∴ y = `"e"^"x"` ...(ii)
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "e"^"x"`
∴ `"dy"/"dx" = "y"` ....[From (ii)]
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = (2x + 5)x
If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?`
The derivative of ax is ax log a.
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Differentiate log (1 + x2) with respect to ax.
If xy = 2x – y, then `("d"y)/("d"x)` = ______
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
If u = ex and v = loge x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx
Find `("d"y)/("d"x)`, if y = x(x) + 20(x)
Solution: Let y = x(x) + 20(x)
Let u = `x^square` and v = `square^x`
∴ y = u + v
Diff. w.r.to x, we get
`("d"y)/("d"x) = square/("d"x) + "dv"/square` .....(i)
Now, u = xx
Taking log on both sides, we get
log u = x × log x
Diff. w.r.to x,
`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`
∴ `"du"/("d"x)` = u(1 + log x)
∴ `"du"/("d"x) = x^x (1 + square)` .....(ii)
Now, v = 20x
Diff.w.r.to x, we get
`"dv"/("d"x") = 20^square*log(20)` .....(iii)
Substituting equations (ii) and (iii) in equation (i), we get
`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)
If y = (log x)2 the `dy/dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy/(dx)` if, `x = e^(3t), y = e^sqrtt`.