मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Fill in the blank. If x = t log t and y = tt, then dydx = ____ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Fill in the blank.

If x = t log t and y = tt, then `"dy"/"dx"` = ____

रिकाम्या जागा भरा

उत्तर

If x = t log t and y = tt, then `"dy"/"dx"` = y.

Explanation:

x = t . log t        ....(i)

y = tt 

Taking logarithm of both sides, we get

log y = t . log t

∴ log y = x         ....[From (i)]

∴ y = `"e"^"x"`        ...(ii)

Differentiating both sides w.r.t. x, we get

`"dy"/"dx" = "e"^"x"`

∴ `"dy"/"dx" = "y"`             ....[From (ii)]

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - MISCELLANEOUS EXERCISE - 3 [पृष्ठ १००]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q II] 9) | पृष्ठ १००
बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Differentiation
MISCELLANEOUS EXERCISE - 3 | Q II] 4) | पृष्ठ ९९

संबंधित प्रश्‍न

Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `"dy"/"dx"`if, y = (2x + 5)x 


If y = log `("e"^"x"/"x"^2)`, then `"dy"/"dx" = ?` 


The derivative of ax is ax log a.


Solve the following:

If y = [log(log(logx))]2, find `"dy"/"dx"`


Differentiate log (1 + x2) with respect to ax.


If xy = 2x – y, then `("d"y)/("d"x)` = ______


If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______


If u = ex and v = loge x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = 4x, then `("d"y)/("d"x)` = 4x  


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `("d"y)/("d"x)`, if y = (log x)x + (x)logx


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


If y = (log x)2 the `dy/dx` = ______.


Find `dy/dx  "if",y=x^(e^x) `


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx if, y =  x^(e^x)`


Find `dy/(dx)` if, `x = e^(3t),  y = e^sqrtt`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×