मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Find dydxif, y = (2x + 5)x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `"dy"/"dx"`if, y = (2x + 5)x 

बेरीज

उत्तर

y = (2x + 5)x 

Taking logarithm of both sides, we get

log y = log (2x + 5)x 

∴ log y = x * log (2x + 5)

Differentiating both sides w.r.t.x, we get

`1/"y" "dy"/"dx" = "x" * "d"/"dx"[log (2"x" + 5)] + log ("2x" + 5) * "d"/"dx" ("x")`

`= "x" * 1/("2x" + 5) * "d"/"dx" ("2x" + 5) + log (2"x" + 5) * (1)`

`= "x"/("2x" + 5) * (2 + 0) + log (2"x" + 5)`

∴ `1/"y" "dy"/"dx" = "2x"/("2x" + 5) + log ("2x" + 5)`

∴ `"dy"/"dx" = "y"["2x"/("2x" + 5) + log ("2x" + 5)]`

∴ `"dy"/"dx" = ("2x" + 5)^"x" [log ("2x" + 5) + "2x"/("2x" + 5)]`

shaalaa.com
The Concept of Derivative - Derivatives of Logarithmic Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Differentiation - EXERCISE 3.3 [पृष्ठ ९४]

APPEARS IN

संबंधित प्रश्‍न

Find `"dy"/"dx"`if, y = `"x"^("x"^"2x")`


Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`


Find `dy/dx`if, y = `(x)^x + (a^x)`.


The derivative of ax is ax log a.


Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`


If u = ex and v = loge x, then `("du")/("dv")` is ______


State whether the following statement is True or False:

If y = log(log x), then `("d"y)/("d"x)` = logx


Find `("d"y)/("d"x)`, if y = [log(log(logx))]2 


Find `("d"y)/("d"x)`, if y = xx + (7x – 1)x 


If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`


Find `("d"y)/("d"x)`, if y = x(x) + 20(x) 

Solution: Let y = x(x) + 20(x) 

Let u = `x^square` and v = `square^x`

∴ y = u + v

Diff. w.r.to x, we get

`("d"y)/("d"x) = square/("d"x) + "dv"/square`   .....(i)

Now, u = xx

Taking log on both sides, we get

log u = x × log x

Diff. w.r.to x,

`1/"u"*"du"/("d"x) = x xx 1/square + log x xx square`

∴ `"du"/("d"x)` = u(1 + log x)

∴ `"du"/("d"x) = x^x (1 +  square)`    .....(ii)

Now, v = 20x

Diff.w.r.to x, we get

`"dv"/("d"x") = 20^square*log(20)`     .....(iii)

Substituting equations (ii) and (iii) in equation (i), we get

`("d"y)/("d"x)` = xx(1 + log x) + 20x.log(20)


Solve the following differential equations:

x2ydx – (x3 – y3)dy = 0


If y = (log x)2 the `dy/dx` = ______.


FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`


Find `dy/dx, "if"  y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, y = `x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/dx` if, `y = x^(e^x)`


Find `dy/(dx)  "if", y = x^(e^(x))` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×