Advertisements
Advertisements
प्रश्न
The derivative of ax is ax log a.
पर्याय
True
False
उत्तर
This statement is True.
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Find `"dy"/"dx"`if, y = (2x + 5)x
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = x log x, then `(d^2y)/dx^2`= _____.
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Differentiate log (1 + x2) with respect to ax.
If y = `"a"^((1 + log"x"))`, then `("d"y)/("d"x)` is ______
Find `(dy)/(dx)`, if xy = yx
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
`int 1/(4x^2 - 1) dx` = ______.
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx , if y^x = e^(x+y)`
Find `dy/dx, "if" y=sqrt((2x+3)^5/((3x-1)^3(5x-2)))`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/(dx)` if, `y = x^(e^x)`