Advertisements
Advertisements
प्रश्न
Find `"dy"/"dx"`if, y = `"x"^("e"^"x")`
उत्तर
y = `"x"^("e"^"x")`
Taking logarithm of both sides, we get
log y = log `"x"^("e"^"x") = "e"^"x" log "x"`
Differentiating both sides w.r.t. x, we get
`1/"y" * "dy"/"dx" = "e"^"x" "d"/"dx" (log "x") + log "x" "d"/"dx" ("e"^"x")`
`= "e"^"x" xx 1/"x" + (log "x")"e"^"x"`
∴ `"dy"/"dx" = "y" * "e"^"x"(1/"x" + log "x") = "x"^("e"^"x") "e"^"x"(1/"x" + log "x")`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `"e"^("x"^"x")`
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
If y = x log x, then `(d^2y)/dx^2`= _____.
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Solve the following:
If y = [log(log(logx))]2, find `"dy"/"dx"`
Differentiate log (1 + x2) with respect to ax.
Choose the correct alternative:
If y = (x )x + (10)x, then `("d"y)/("d"x)` = ?
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
If x = t.logt, y = tt, then show that `("d"y)/("d"x)` = tt
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
Find `("d"y)/("d"x)`, if y = `root(3)(((3x - 1))/((2x + 3)(5 - x)^2)`
Solve the following differential equations:
x2ydx – (x3 – y3)dy = 0
Find`dy/dx if, y = x^(e^x)`
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx if, y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`