Advertisements
Advertisements
प्रश्न
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
उत्तर
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =` axy
Explanation:
y = `"e"^"ax"`
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "e"^"ax" * "d"/"dx" ("ax")`
`= "e"^"ax" * ("a")`
`= "a" * "e"^"ax"`
∴ `"dy"/"dx"` = ay
∴ `"x" "dy"/"dx" = "axy"`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `(1 + 1/"x")^"x"`
Fill in the Blank
If 0 = log(xy) + a, then `"dy"/"dx" = (-"y")/square`
State whether the following is True or False:
The derivative of `log_ax`, where a is constant is `1/(x.loga)`.
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
Differentiate log (1 + x2) with respect to ax.
If u = 5x and v = log x, then `("du")/("dv")` is ______
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
Find `("d"y)/("d"x)`, if x = `sqrt(1 + "u"^2)`, y = log(1 +u2)
Find `("d"y)/("d"x)`, if y = `x^(x^x)`
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
`int 1/(4x^2 - 1) dx` = ______.
Find `dy/dx "if",y=x^(e^x) `
Find `dy/dx` if, y = `x^(e^x)`
Find `dy / dx` if, `y = x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`