Advertisements
Advertisements
प्रश्न
Fill in the blank.
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =`____
उत्तर
If y = `"e"^"ax"`, then `"x" * "dy"/"dx" =` axy
Explanation:
y = `"e"^"ax"`
Differentiating both sides w.r.t. x, we get
`"dy"/"dx" = "e"^"ax" * "d"/"dx" ("ax")`
`= "e"^"ax" * ("a")`
`= "a" * "e"^"ax"`
∴ `"dy"/"dx"` = ay
∴ `"x" "dy"/"dx" = "axy"`
APPEARS IN
संबंधित प्रश्न
Find `"dy"/"dx"`if, y = `root(3)(("3x" - 1)/(("2x + 3")(5 - "x")^2))`
Find `"dy"/"dx"`if, y = `(log "x"^"x") + "x"^(log "x")`
Find `dy/dx`if, y = `(x)^x + (a^x)`.
Find `"dy"/"dx"`if, y = `10^("x"^"x") + 10^("x"^10) + 10^(10^"x")`
State whether the following is True or False:
If y = log x, then `"dy"/"dx" = 1/"x"`
State whether the following is True or False:
If y = e2, then `"dy"/"dx" = 2"e"`
Find `"dy"/"dx"` if y = `"x"^"x" + ("7x" - 1)^"x"`
State whether the following statement is True or False:
If y = log(log x), then `("d"y)/("d"x)` = logx
State whether the following statement is True or False:
If y = 4x, then `("d"y)/("d"x)` = 4x
Find `("d"y)/("d"x)`, if y = [log(log(logx))]2
If xa .yb = `(x + y)^((a + b))`, then show that `("d"y)/("d"x) = y/x`
If y = x . log x then `dy/dx` = ______.
FInd `dy/dx` if,`x=e^(3t), y=e^sqrtt`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/dx` if, y = `x^(e^x)`
Find `dy/dx` if, `y = x^(e^x)`
Find `dy/dx "if", y = x^(e^x)`
Find `dy/(dx) "if", y = x^(e^(x))`
Find `dy/(dx)` if, `y = x^(e^x)`